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EXTENDED ABSTRACT

Introduction

The life cycle of agricultural products
undergoes significant changes due to
diseases. Visual recognition of disease

symptoms in plant leaves involves observing
changes in leaf appearance that can indicate
disease or plant stress. These symptoms
include spots, discoloration, wilting, leaf rust,
abnormal growth, and abnormal leaf drop.
These symptoms can be identified and
managed using advanced visual tools, such as
remote sensing and drone imagery, and
artificial intelligence-based algorithms.
Meshram et al. (2021) reviewed the
applications of machine learning algorithms
in agriculture in three phases: pre-harvest,
during-harvest, and post-harvest. This review
found that machine learning algorithms have
achieved significant results in solving
agricultural problems. Their study showed
that there is a need to follow the path of
machine learning with standard empirical
methods. Researchers should create their own
datasets and make them available on different
platforms so others can use them to test and
validate their models. Rahmn et al. (2025)
developed a real-time leaf disease detection
system for 8 plant species (potato, tomato,
bell pepper, apple, corn, grape, peach, and
rice) using deep learning techniques,
including Inception, VGG, MobileNet, and
DenseNet. Their dataset consisted of 30,945
images and 35 disease classes. The highest
accuracy for disease detection was 98% for
tomatoes with the Inception model, 100% for
bell peppers with the MobileNet model, 100%
for apples with the MobileNet model, 99% for
grapes with the VGG model, 100% for
peaches with the VGG model, and 98% for
rice with the DenseNet model.

Material and Methods

A total of 13,324 images of diseased leaves
from 5 different crops, namely, cotton, potato,
sugarcane, wheat, and rice (Figure 1), with
different image sizes but a total of 4.79 GB,
were obtained from the Kaggle site. Table 1

shows the setup and implementation features
of the proposed model training.

Proposed Models

1. ShuffleNet Model

The ShuffleNet model is a convolutional
neural network architecture with a
lightweight computational structure and is
less complex than models such as VGG and
ResNet. Its disadvantages include its possible
lower performance compared to models such
as EfficientNet.

2. RegNet Model

The RegNet model is another convolutional
neural network architecture that is highly
flexible for computer vision applications such
as image classification, object recognition,
and segmentation. Compared to complex
architectures such as VGG, the network is
simple and efficient, and offers a better
balance between accuracy and computational
cost.

3- DenseNet Model

Unlike standard architectures that only
connect between consecutive layers, the
DenseNet model connects all layers together.
This means that because each layer adds new
learned features to subsequent layers, the
number of parameters is reduced, and the
model consumes less memory.

To evaluate the efficiency of the classifiers,
the criteria of precision, accuracy, recall, and
F-score were extracted from the confusion
matrices, the operating characteristic curve
diagram, and the precision-recall diagram.

Results and Discussion

The ResNet model does not overfit; both the
training and validation datasets have good
accuracy, and the training and validation
errors have decreased and then stabilized.
This means the model has been able to train
on new data effectively. In the ShuffleNet
classifier, it was observed that the training
accuracy increased rapidly. The validation
accuracy also increased but did not reach the
training accuracy, indicating mild overfit. The
DenseNet model also showed an increase in
accuracy, but validation accuracy fluctuated
and did not reach the desired value. This
model was not stable in learning new data.
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In all models, most values lie on the main
diagonal of the matrices, indicating that the
models make correct predictions across
classes. The model performs well across most
classes but may be biased in some.

In all three proposed models, the lines for
many classes are close to the upper right
corner, indicating high precision and recall.
This means that the model performs very well
in recognizing most classes. Classes whose
lines are not close to the upper corner may
need improvement, which may be due to class
similarity or data imbalance.

The overall accuracy of the RegNet model is
about 96%, indicating it successfully
identifies most rice and wheat diseases. The
overall accuracy of the ShuffleNet model was
94.4%, a promising result, though slightly
lower than that of the previous model. The
highest accuracy, 97.2%, was achieved with
the DenseNet model.

Conclusions

This study aimed to identify plant diseases in
different crops using image processing and
deep learning algorithms. The results showed
that different models, including RegNet,
ShuffleNet, and DenseNet, performed well at
classifying plant diseases. The models were
evaluated based on criteria such as accuracy,
precision, recall, F1 score, and ROC and
accuracy-recall curves.

» The RegNet model performed stably and
showed the best balance between accuracy
and recall.

» The ShuffleNet model had a slight overfit,
but overall provided acceptable performance.
* The DenseNet model, despite its dense
connections, had fluctuations in validation

accuracy in cases and needs
improvement.

» The ROC and accuracy-recall curves
showed that the models performed very well
in identifying most classes. Still, some classes
need improvement, which may be due to
feature similarity or data imbalance.

Finally, the results of this research confirm
that the use of deep learning algorithms in
plant disease identification can effectively
increase agricultural productivity and be an

important step towards smart agriculture.
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