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The aim of this research is the development of hybrid models based on
transfer learning concept to classify apple images into four classes
named: healthy apples, apples affected by bacterial disease, apples
affected by fungal disease, and apples with tissue level disease
propagation. A single-staged four-class model as well as six hybrid
models were utilized for classification. Each hybrid model consisted of a
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three-class model followed by a two-class model. To train them, 850
images of the Kaggle dataset was used. The backbone of all transfer
learning models was the EfficientNet algorithm. The models were
implemented in the PyCharm environment, using the Python
programming language. Evaluation of the models were carried out using
the confusion matrix, as well as the calculation of the precision, accuracy,
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sensitivity, specificity, and F1-score criteria. According to the results of
this study, the value of all performance evaluation criteria exceeded 0.94,
indicating that the developed models performed robustly in classifying
apple images; however, some hybrid models performed worse than the
single-staged classifier. Therefore, the optimal configuration of hybrid
classifiers cannot be assumed a priori; instead a systematic evaluation of
all possible combinations is necessary to identify the most effective
approach.
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EXTENDED ABSTRACT

Introduction

Recent advances in precision agriculture
highlight the pivotal role of machine vision
and deep learning in developing automated
systems for fruit classification and grading. A
wide range of studies have been conducted
with the primary aim of replacing manual
methods and improving accuracy and
efficiency. These studies can be broadly
categorized into three main approaches.

The first involves hybrid frameworks, where
fast detection models such as YOLO are
integrated with advanced classification
architectures, achieving accuracies of
approximately 92% across multiple fruit
types. The second focuses on multi-stage
systems, designed for specific fruits, in which
the classification process is structured into
sequential steps such as fruit type
identification, freshness assessment, and
ripeness evaluation. The third approach
emphasizes explainable models, exemplified
by frameworks such as XAlI-FruitNet, which
not only achieve very high accuracies
(exceeding 97%) across diverse datasets but
also provide interpretability in model
decision-making. Overall, while these studies
share a common objective—enhancing
accuracy and overcoming the limitations of
conventional approaches—they differ
considerably in their technical methodologies
and scope of application. Some prioritize
feature integration, others employ multi-stage
analysis, and yet others focus on
explainability.

Building on these advancements, the present
study proposes the use of sequential hybrid
classifiers based on transfer learning to
categorize apple images into four distinct
classes: healthy apples, apples affected by
bacterial disease, apples affected by fungal
disease, and apples with tissue-level disease
progression.

Material and Methods

The dataset used in this study was obtained
from the Kaggle repository and consists of
four categories of apple images:

e Bacterial Disease (Blotch): 234 images,
divided into 146 for training and 88 for
testing.

e Healthy Apples (Normal): 222 images,
divided into 130 for training and 92 for
testing.

e Advanced Tissue Rot (Rot): 226 images,
divided into 134 for training and 92 for
testing.

e Fungal Disease (Scab): 168 images,
divided into 100 for training and 68 for
testing.

The objective of this study was to classify
apples into one of these four categories. Two
classification strategies were investigated: a
single unified four-class classifier and
sequential hybrid classifiers. The hybrid
classifier first classifies images into three
classes, with one class combining two of the
four original categories. Subsequently, a
binary classifier further separates the images
within this composite class into the two
original groups.

Given the four-class problem, six possible
hybrid configurations were constructed. The
performance of each hybrid classifier was
evaluated and compared with the unified four-
class classifier. Using the abbreviations B, N,
R, and S to represent the four categories
(Blotch, Normal, Rot, and Scab,
respectively), the classifiers investigated were
as follows:

Unified four-class classifier: B-N-R—S

e Hybrid classifier BN—-R-S followed by a
binary classifier B-N

e Hybrid classifier BR—-N-S followed by a
binary classifier B-R

e Hybrid classifier BS-N-R followed by a
binary classifier B-S

e Hybrid classifier B-NR-S followed by a
binary classifier N-R

e Hybrid classifier B-NS—R followed by a
binary classifier N-S

e Hybrid classifier B-N-RS followed by a
binary classifier R—S

All classifiers employed the pre-trained
EfficientNet model as the backbone, and the
implementations were carried out in Python
using the PyCharm environment.
Performance evaluation was conducted using
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confusion matrices and standard metrics
including accuracy, precision, sensitivity,
specificity, and F1-score.

Results and Discussion

By employing the proposed model instead of
a conventional convolutional neural network,
the number of trainable parameters was
drastically reduced. This substantial reduction
not only decreased the training time of the
transfer learning-based model but also
enabled its deployment on computers without
GPU support.

All performance evaluation metrics exceeded
0.94, indicating that the developed model
performs robustly in classifying apple
images. These results confirm the suitability
of the transfer learning approach using the
pre-trained EfficientNet architecture for
categorizing apples into four classes:
Bacterial  Disease  (Blotch),  Healthy
(Normal), Advanced Tissue Rot (Rot), and
Fungal Disease (Scab).

Regarding hybrid classifiers, the B-NR-S
and BS-N-R configurations outperformed
the unified four-class classifier, while the
BR-N-S hybrid achieved comparable
accuracy. In contrast, the BN—R—S, B-NS—R,
and B-N-RS hybrid classifiers performed
worse than the unified model. This variation
can be explained by the fact that combining
classes acts like a form of feature engineering,
and since all possible hybrid combinations are
considered, this feature engineering occurs
stochastically. Consequently, some
combinations may lead to reduced overall
accuracy. Therefore, when developing hybrid
classifiers, it is essential to account for this
property and discard configurations that
underperform relative to the unified classifier.

Conclusions
This study demonstrates that all developed
models achieved robust, reliable

performance, with all evaluation metrics
exceeding 0.94, which can be attributed to the
use of a sufficiently large image dataset and
the incorporation of transfer learning
algorithms. The consistent high performance
across models underscores the effectiveness

of transfer learning in enhancing the accuracy
and generalizability of automated apple
classification systems.

A comparative analysis revealed that some
hybrid models outperformed the unified four-
class classifier, while others performed
comparably worse. These findings indicate
that the optimal configuration of hybrid
classifiers cannot be assumed a priori;
instead, a comprehensive development and
systematic evaluation of all possible hybrid
combinations are necessary, with each being
benchmarked against the unified model to
identify the most effective approach.

The relative advantage of the unified
classifier stems primarily from its single-
model architecture, in contrast to the paired
structure of hybrid models. While some
hybrid  configurations offer potential
improvements in classification accuracy, their
deployment in an operational apple grading
line requires additional hardware, which may
pose practical challenges. This highlights a
critical trade-off between achieving marginal
performance gains and maintaining the
feasibility of real-world implementation.
Overall, the findings of this study not only
confirm the efficacy of transfer learning-
based approaches for multi-class fruit
classification but also provide important
insights into the design considerations,
performance trade-offs, and practical
constraints associated with implementing
hybrid versus unified classifier architectures
in industrial agricultural settings.
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