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learning approach. Based on the obtained results, the accuracy
of the proposed model on the test data was 91%, with an error
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precision of 100% in distinguishing saffron and Azmak from the
other classes. This study can be considered a foundation for the
development of robotic systems aimed at site-specific weed
management in saffron fields.
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EXTENDED ABSTRACT

Introduction

Precision agriculture technologies play a
crucial role in optimizing crop management
by enabling site-specific interventions,
particularly in weed control. Traditional weed
management methods often result in
excessive herbicide use, environmental
damage, and crop damage. Automated weed
detection using deep learning offers a
promising solution, accurately distinguishing
between crops and weeds, thereby facilitating
targeted removal. Saffron, a high-value crop,
faces competition from invasive weeds such
as Flixweed and Hoary Cress, which reduce
yield and quality. This study leverages
computer vision and deep learning to classify
saffron and these two common weeds under
natural field conditions. Convolutional
Neural Networks (CNNs), were employed
due to their proven effectiveness in image
classification tasks. Transfer learning was
applied to enhance model performance by
utilizing pre-trained weights from ImageNet.
The research aims to develop a robust
classification model that can support
precision agriculture tools, such as robotic
weeders, by accurately identifying weeds
while preserving the main crop. The success
of this approach could significantly reduce
herbicide use, lower production costs, and
improve saffron yield through automated,
site-specific weed management.

Material and Methods

A dataset of 291 field images of saffron,
Flixweed, and Hoary Cress was collected
under natural lighting and environmental
conditions. Each image was resized to
150x150 pixels, and data augmentation
techniques (e.g., rotation, flipping, scaling)
were applied to expand the dataset and
improve model generalization artificially.
The study utilized the VGG16 CNN
architecture, fine-tuned via transfer learning
with ImageNet weights. The model was
trained to classify the three plant categories,
and its performance was evaluated using test
data. Key metrics included accuracy, FI1-

score, and precision to assess classification
effectiveness.

Results and Discussion

The proposed model achieved an overall
accuracy of 91% on unseen test data, with a
loss of 0.3759. The Fl-scores for Saffron,
Hoary Cress, and Flixweed were 85%, 100%,
and 86%, respectively. Notably, the model
demonstrated perfect precision (100%) in
distinguishing saffron from Hoary Cress,
indicating no false positives for these classes.
Flixweed recognition was slightly less precise
but still highly effective (86% F1-score). The
high classification accuracy suggests that
deep learning, combined with transfer
learning, is a viable approach for weed
detection in precision agriculture. The
model's ability to differentiate saffron from
invasive weeds under real-world conditions
supports its potential integration into
automated weeding systems. These results
suggest that robotic weeders equipped with
such Al models can selectively target weeds
while minimizing crop damage, thereby
reducing reliance on  broad-spectrum
herbicides.

Conclusions

This study demonstrates the effectiveness of
deep learning in distinguishing saffron from
Flixweed and Hoary Cress under natural field
conditions. The improved VGG16 model
achieved high accuracy (91%) and near-
perfect precision for certain weed classes,
validating its potential for real-world
agricultural applications. The findings
provide a foundation for developing Al-
driven weed removal robots, which could
enhance precision farming by enabling
targeted, sustainable weed management.
Future research should focus on optimizing
models for real-time processing and
integration with robotic systems. Expanding
the dataset to include more weed species and
varying environmental conditions could
further improve robustness. Overall, this
work contributes to advancing precision
agriculture technologies, offering a scalable
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solution for automated weed control in
saffron fields and similar high-value crops.
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14,871,651 Trainable parameters
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