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achieved the most accurate classification performance, with an overall
accuracy of 97.29% and a kappa coefficient of 0.96, while the support vector
machine with a linear kernel ranked second, with kappa coefficient and
overall accuracy values of 0.89 and 92.46%, respectively. The weakest
[=] performance was observed for the minimum distance algorithm, with an
: overall accuracy of 72.97% and a kappa coefficient of 0.66. Based on the
results of this study, the maximum likelihood classifier provided superior
performance in discriminating land use classes in Masal County. The findings
of this research are of significant importance for policymakers and provincial
managers in increasing awareness of changes in agricultural and forest land
use in the region.
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EXTENDED ABSTRACT

Introduction

Land use and land cover change, driven by
either anthropogenic activities or natural
dynamics, 1s a critical environmental
challenge in many regions of the world,
particularly in ecologically sensitive and
agriculturally significant areas such as the
northern provinces of Iran. Monitoring these
changes is essential for sustainable resource
management, environmental protection, and
regional planning. Masal County, with its
diverse landscape including forested areas,
agricultural lands, and urban settlements,
represents a case where accurate and timely
land use classification is vital for informed
decision-making. Remote sensing
technologies,  particularly = multispectral
satellite data like Sentinel-2, have emerged as
powerful tools for capturing spatial and
temporal variations in land wuse. The
application of machine learning algorithms
has further enhanced the potential for precise
classification; however, the performance of
these algorithms can vary significantly
depending on the spatial characteristics of the
study area. Thus, selecting an appropriate
classification method is crucial for reliable
land cover assessment. This study aims to
evaluate and compare the performance of four
common classification algorithms, Maximum
Likelihood, Minimum Distance, Mahalanobis
Distance, and Support Vector Machine
(SVM) with various kernel functions (linear,
polynomial, sigmoid, and radial basis
function), for classifying Land use and land
cover in Masal County using Sentinel-2

imagery.

Material and Methods

The methodology of this study involved the
acquisition and processing of Sentinel-2
satellite imagery covering Masal County.
Ground truth data were established through a
combination of GPS-based field surveys and
interpretation of high-resolution Google Earth
imagery. To enhance the accuracy of land use
classification, several spectral indices were
calculated, including the Normalized

Difference  Vegetation Index (NDVI),
Normalized Difference Built-up Index
(NDBI), and Modified Normalized

Difference Water Index (MNDWI). These
indices helped in distinguishing between
vegetation, built-up areas, and water bodies,
respectively. Four classification algorithms
were tested: Maximum Likelihood, Minimum
Distance, Mahalanobis Distance, and SVM
with linear, polynomial, sigmoid, and radial
basis function (RBF) kernels. Model
validation was conducted using confusion
matrices, with overall accuracy and Kappa
coefficient serving as the primary evaluation
metrics.

Results and Discussion

The comparative evaluation of the four
classification algorithms Maximum
Likelihood, Minimum Distance, Mahalanobis
Distance, and Support Vector Machine
(SVM) with various kernels revealed
substantial differences in their ability to
accurately classify land use types in Masal
County using Sentinel-2 imagery and
ancillary spectral indices. Among the tested
methods, the Maximum Likelihood classifier
demonstrated the highest performance,
achieving an overall accuracy of 97.29% and
a Kappa coefficient of 0.96. This high
accuracy indicates the algorithm's strong
capability in modeling the statistical
distribution of pixels for each land use class,
particularly when sufficient and
representative training data are available. The
confusion matrix for this classifier revealed
minimal misclassification between major land
cover types, including agricultural lands,
forests, built-up areas, and water bodies. The
high values for both overall accuracy and
Kappa coefficient suggest that the Maximum
Likelihood approach is robust for the
heterogeneous landscape of Masal County.
The SVM classifiers, especially with a linear
kernel, also performed well, with an overall
accuracy of 92.46% and a Kappa coefficient
of 0.89. This suggests that the land cover
classes in the study area are largely linearly
separable in the feature space constructed
from the spectral bands and indices. The SVM
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with other kernels polynomial, sigmoid, and
radial basis function (RBF) showed slightly
lower accuracies, indicating that increased
model complexity did not necessarily
translate to better discrimination in this
particular dataset. The linear kernel's strong
performance highlights its suitability for
remote sensing applications where class
boundaries are relatively straightforward. The
Mahalanobis Distance classifier achieved
moderate results, with overall accuracy and
Kappa values lower than those of Maximum
Likelihood and SVM, but higher than those of
Minimum Distance. This method benefited
from considering the covariance among
spectral ~ features, which helped in
distinguishing classes with overlapping
spectral signatures. However, its performance
was limited in areas where class distributions
were not well separated. The Minimum
Distance classifier exhibited the weakest
performance, with an overall accuracy of
72.97% and a Kappa coefficient of 0.66. Its
reliance on simple Euclidean distances made
it less effective in capturing the spectral
complexity of the region, leading to higher
rates of misclassification, particularly
between agricultural and wurban classes.
Incorporating spectral indices such as NDVI,
NDBI, and MNDWTI significantly improved
the classification results for all algorithms.
These indices enhanced the separability of
vegetation, built-up, and water classes,
reducing confusion and increasing the
reliability of the classified maps.

Conclusions

The findings of this study underscore the
crucial role of algorithm selection in remote
sensing-based land-use classification. Among
the tested methods, the Maximum Likelihood
classifier consistently delivered the highest
accuracy and reliability for distinguishing
land use types in Masal County, followed
closely by the SVM with a linear kernel. The
use of spectral indices further enhanced the

classification results, emphasizing the value
of integrating ancillary data for improved land
cover discrimination. These outcomes offer
practical guidance for land managers,
policymakers, and researchers seeking to
monitor and manage land-use changes in
northern Iran and similar regions. Accurate
land use maps are essential for tracking
agricultural expansion, forest degradation,
and wurban growth, all of which have
significant implications for environmental
sustainability and regional planning. Future
research should explore the integration of
additional data sources and advanced
machine learning techniques to refine
classification accuracy further and support
dynamic land use monitoring.
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30 arle pl oo g lid eogame (pl jo e dawes
Nloe Cawd & ¥ gabal, 5l g anals 13 -) g +) sogae

:(FeyzollahPour, 2024; Ghosh et al., 2015)

MNDWI = Green — SWIR ™)
" Green + SWIR
Al SWIR tyem Ggolo &b 4o 55 s Green : ] jo a5

Lol olisS g Jobo b 30,8 (ygole canlo )5 i

NDBI? _asLi

g Sl gl bojls cul Jloys Jolas asls
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ol o0game 098 o ooliiul Suop 36,8 ygole 5 (SWIR)
45 and o i ke ke 45 Caul -) 5 #) oy s ls
S (Il )0 3,5 0929 (S9Se gy HlS 8590 dilna )
el S9N 3blie 5105 g 9929 camojlid Cude dae
(Yasin ef al., &l oo cows 0 ¥ gabal) 5l jasls oyl
2022)

(SWIR — NIR)

NDBI = — - ™
(SWIR + NIR)

29bad 31y ey

oylsple ¥ mhaw 5 Vo acgezme paal Gl eghy onl e
kS pslai (nl 9y p sz S eslanl V- b
@ Gl 0l plxil (552 5 (w3l (owiie Slageal
Rgs I G S e el

polai guiwdinb

b Sl g oe o) (B)l9e A 9 SIS sl
90 4 S job 4y ganails 0,8 colaiul gloslgals 5glas

1- Mean Normalized Difference Water Index
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