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EXTENDED ABSTRACT

Introduction

Temperature is a critical factor affecting the
quality and shelf life of perishable food
products, making the precise and cost-
effective monitoring of its levels essential
throughout the cold chain. Due to practical
limitations in deploying physical sensors at
every point of interest, the development of
soft (virtual) sensors for temperature
estimation has attracted considerable research
attention. Soft sensors are generally
categorised into model-based and data-driven
approaches, with the latter offering superior
capability in capturing system dynamics
without  requiring  detailed  physical
modelling. Among various data-driven
methods, artificial neural networks (ANNs)
have demonstrated superior performance
compared to alternative techniques.

The first step in designing a data-driven soft
sensor is to collect and prepare training data,
which can be either experimental or synthetic.
Studies indicate that experimental data lead to
more accurate estimations, although they are
harder to obtain. A crucial subsequent step
involves selecting appropriate input variables
corresponding to potential sensor locations.
While most previous studies have relied on
subjective or heuristic input selection,
supervised feature selection methods offer a
structured and potentially more optimal
alternative; however, such methods have
rarely been applied in the context of
temperature soft sensors for cold chains.
Once inputs and outputs are defined, the
modelling process typically employs ANNSs,
which have shown superior estimation
performance over classical models. The
present study implements supervised feature
selection to optimise both the number and
placement of physical sensors and to
statistically investigate the effects of key
hyperparameters in the time-delay neural
network (TDNN) serving as the system's soft
sensor estimator.

Material and Methods
A cost-effective, Arduino-based data logger

was developed to collect real temperature data
for training the soft sensor. Temperature
distribution data were collected from two
peach pallets stored in a 2000-ton cold storage
room maintained at 1 °C. The logger
simultaneously recorded data from up to 20
DS18B20 sensors at 1-minute intervals. A
novel supervised feature selection approach
(wrapper method) was applied to identify the
most informative sensor positions, thereby
minimizing the required number of physical
sensors. A time-delay neural network
(TDNN) with one hidden layer was employed
for temperature estimation. The influence of
four key hyperparameters—time delay,
number of hidden neurons, activation
function, and training algorithm—on model
performance metrics (RMSE, R?, MAE, BIC)
was evaluated. Additionally, a metaheuristic
algorithm was used to assess the effectiveness
of the feature selection method in reducing the
sensor count. Model generalisability was
verified using an out-of-sample test set
collected under varying temperature scenarios
and pallet placements.

Results and Discussion

Data acquisition for the first pallet lasted five
hours, during which the cold storage
refrigeration system operated under standard
conditions. Table 1 ranks the five most
informative sensor locations identified using
the FIRE method. Table 3 presents the best
model fits obtained with the SIG and ReLU
activation functions. These models share a
common structure: Levenberg—Marquardt
(LM) training and a 20-minute time delay.
Comparing activation functions reveals that
ReLU yields superior performance metrics
(R?mean and RMSEmean), while SIG
achieves a lower BIC. Figure 4 illustrates how
R?mean and RMSEmean vary as the number
of physical sensors is reduced based on FIRE
rankings under the optimal estimator
configuration (LM2010-ReLU), showing no
consistent trend and indicating the robustness
of FIRE's variable selection.

For the second pallet, data acquisition also
spanned five hours; however, the refrigeration
system was inactive for defrosting during the
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first three hours and resumed operation in the
final two. Table 2 shows the FIRE-derived
variable ranking, and Table 4 lists the best
model fits for this dataset. All models for the
second pallet employed LM training, a 20-
minute delay, and five hidden neurons. In this
case, performance metrics (R?’mean and
RMSEmean) progressively deteriorated as the
number of sensors used decreased (Figure 4),
indicating a greater sensitivity to sensor
reduction under dynamic thermal conditions.
Correlation  analysis  revealed  strong
relationships between RMSEmean and
MAEmean, as well as among MSEtrain,
MSEvalidation, and MSEtest; however,
R’mean showed little correlation with these
variables. BIC exhibited a significant
correlation with several metrics.
Consequently, MSEtrain, R?mean, and
RMSEmean were deemed sufficient for
performance evaluation.

The influence of estimator hyperparameters
(Table 5) indicated that the training method
significantly affected performance, favouring
LM. Hidden layer size and time delay
primarily influenced BIC, while activation
function showed no significant effect,
consistent with Loisel et al. (2022). Ant
Colony Optimisation (ACO) was applied to
validate FIRE rankings (Figure 5). ACO
results revealed alternative sensor
combinations yielding lower RMSEmean
than FIRE, suggesting that heuristic methods
may offer superior configurations for "one-
sensor-per-pallet" setups. Table 6 compares
FIRE and ACO outcomes, confirming ACO's
advantage in reducing the mean RMSE.
Cross-pallet validation demonstrated that the
soft sensor trained on one pallet and tested on
the other under different thermal scenarios
achieved RMSEmean values of 0.8 K and 1.0
K—13-15 times higher than the training
RMSEmean, but acceptable given the
scenario differences. However, R?mean
(~0.4) indicated limited generalisation,
implying that future training with diverse
scenarios would enhance robustness (Figure
6).

Conclusions

The findings of this study demonstrate the
high potential of supervised feature selection
as a structured and objective method for
identifying the most informative locations for
hardware  sensor placement in the
development of soft sensors. However, to
further reduce the required number of
hardware sensors, the use of alternative
methods, such as metaheuristic algorithms or
exhaustive search techniques, appears to be a
more prudent approach. In this regard, future
research could explore and compare different
supervised feature selection techniques to
assess their ranking effectiveness and
robustness in similar applications.

The out-of-sample evaluation of the
developed soft sensor in the "one-pallet-one-
sensor" configuration yielded RMSE mean
values ranging between 0.8 K and 1.0 K. This
outcome is considered acceptable given the
"single-scenario training" condition.
Nevertheless, several factors could influence
the accuracy and generalisation performance
of the soft sensor, including: (1) the size of the
dataset (in terms of duration or number of data
points), (2) the temperature scenario or the
operational state of the refrigeration system,
and (3) the location of the pallets within the
cold storage. Therefore, increasing the
diversity of data acquisition conditions—such
as varying spatial placement or thermal
scenarios—is likely to yield valuable
information for further improving the soft
sensor's performance and predictive accuracy.
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1- Multi-Input-Multi-Target
2- Generalization Test

3- Over-Fitting

4- Early Stopping

5- Configuration
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