Abdollahzadeh Delazi, M., Amiri Chayjan, R. & Kaveh, M. (2024). Optimizing the GHG emissions and energy consumption of power plants in the industry of vacuum drying using a controlled atmosphere method (case study: apple pulp). Clean Technologies and Environmental Policy, 26: 2899–2918. https://doi.org/10.1007/s10098-024-02778-2.
Ahmadi Ghavidelan, M., & Amiri Chayjan, R. (2017). Modeling engineering characteristics of hazelnut kernel during infrared fluidized bed drying. Food Measure, 11: 460–478. https://doi.org/10.1007/s11694-016-9414-0
Alaei, B. & Chayjan, R. Study on thin layer drying parameters of pomegranate arils in a solar-vacuum dryer. (2015). Journal of food science and technology (Iran), 48 (12): 27-36. (in persian).
Alwazeer, D., and Ors, B. (2019). Reducing atmosphere drying as a novel drying technique for preserving the sensorial and nutritional notes of foods. Journal of Food Science and Technology -Mysore-, 56(8): 3790–3800. https:// doi. org/ 10. 1007/ s13197- 019- 03850-2.
An, J., Xie, H., Yan, J., Wei, H., Wu, Y., & Liao, X. (2024). A review of applications of energy analysis: Grain, fruit and vegetable drying technology. Energy Reports, 12, 5482–5506. https://doi.org/10.1016/j.egyr.2024.11.037
Amiri Chayjan, R., & Alaei, B. (2016). Comparison of short and medium infrared radiation on drying parameters of peach slices under vacuum conditions. Journal of food science and technology, 58(13). 107-116 (In persian).
Amiri Chayjan, R., Dibagar, N., & Alaei, B. (2017). Drying characteristics of zucchini slices under periodic infrared-microwave vacuum conditions. Heat Mass Transfer. 53:3473–3485. DOI 10.1007/s00231-017-2081-9
Bórquez, R., Melo, D., and Saavedra, C. )2017). Microwave–vacuum drying of strawberries with automatic temperature control. Food Bioprocess Technol, 8(2): 266–276. Doi: 10.1007/s11947-014-1400-0
Bunkar, D.S., Anand, A., Meena K.K., Goyal, S.K., and Paswan, V.K. (2020). Development of production technology for preparation of beetroot powder using different drying methods. Annals of Phytomedicine, 9(2): 293-301. doi: 10.21276/ap.2020.9.2.29.
Cao, X., Chen, J., Islam, N., Xu, W., and Zhong, S. (2019). Effect of Intermittent Microwave Volumetric Heating on Dehydration, Energy Consumption, Antioxidant Substances, and Sensory Qualities of Litchi Fruit during Vacuum Drying. Molecules, 24(23), 1-11. https://doi.org/10.3390/molecules24234291.
Chua, L. Y. W., Chua, B. L., Figiel, A., Chong, C. H., Wojdyło, A., Szumny, A., & Choong, T. S. Y. (2019). Antioxidant Activity, and Volatile and Phytosterol Contents of Strobilanthes crispus Dehydrated Using Conventional and Vacuum Microwave Drying Methods. Molecules, 24(7): 1397. https://doi.org/10.3390/molecules24071397
Chupawa, P., Inchuen, S., Jaisut, D., Ronsse, F., and Duangkhamchan, W. (2023). Effects of Stepwise Microwave Heating and Expanded Bed Height Control on the Performance of Combined Fluidized Bed/Microwave Drying for Preparing Instant Brown Rice. Food and Bioprocess Technology, 16: 199–215. https://doi.org/10.1007/s11947-022-02933-x.
Darvishi, H., Zarein, M., and Farhudi, Z. (2016). Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices. Journal of Food Science Technology, 53 2317–2333. https://doi.org/10.1007/s13197-016-2199-7.
Dehghannya, J., Bozorghi, S. & Heshmati, M.K. (2018a). Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes. Heat Mass Transfer, 54: 929–954. https://doi.org/10.1007/s00231-017-2202-5.
Dehghannya, J., Farshad, P., & Khakbaz Heshmati, M. (2018b). Three-stage hybrid osmotic–intermittent microwave–convective drying of apple at low temperature and short time. Drying Technology, 36(16): 1982–2005. https://doi.org/10.1080/07373937.2018.1432642.
Dehghannya, J., Seyed-Tabatabaei, SR., Khakbaz Heshmati, M. et al. (2021). Influence of three stage ultrasounds—intermittent microwave—hot air drying of carrot on physical properties and energy consumption. Heat Mass Transfer, 57, 1893–1907. https://doi.org/10.1007/s00231-021-03074-1.
Elkelawy, M., El Shenawy, E. A., Bastawissi, H. A. E., Shams, M. M., & Panchal, H. (2022). A comprehensive review on the effects of diesel/biofuel blends with nanofluid additives on compression ignition engine by response surface methodology. Energy Conversion and Management: X, 100177. https://doi.org/10.1016/j.ecmx.2021.100177.
Fathabadi, M., Tabatabaekoloor, and R., Motevali A. (2020). Modeling and comparison of color changes and shrinkage of thin layer drying of red beetroot in different dryers. Journal of food science and technology, 93(16): 127-142. https://sid.ir/paper/72023/en (in persian).
Figiel, A., and Michalska, A. (2017). Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwave. International Journal of Molecular Sciences, 71: 1-18. doi: 10.3390/ijms18010071.
Gaudel, N., Gaiani, C., Harshe, Y. M., Kammerhofer, J., Pouzot, M., Desobry, S., & Burgain, J. (2022). Reconstitution of fruit powders: A processstructure function approach. Journal of Food Engineering, 315. 110800. https://doi.org/10.1016/j.jfoodeng.2021.110800.
Ghasemi, A., & Amiri Chayjan, R. A. (2018). Optimization of Pelleting and Infrared-Convection Drying Processes of Foodand Agricultural Waste Using Response Surface Methodology (RSM). Waste and Biomass Valorization, 10, 1711-1729. https://doi.org/10.1007/s12649-017-0178-5
Ghasemi, A., & Amiri Chayjan, R. A. (2019). Numerical simulation of vitamin C degradation during dehydration process of fresh tomatoes. Journal of Food Process Engineering, 42(6). https://doi.org/10.1111/jfpe.13189.
Ghasemi, A., Amiri Chayjan, R., and Azizi Tabriz zad, M. H. (2019). Study on Drying, Powdering and Compression Processes to produce Healthy Tablet from Fresh Tomatoes. Journal of food science and technology (Iran), 90(16): 201-216. (in persian).
Golpour, I., Kaveh, M., Chayjan, R. A., and Guiné, R. P. F. (2020). Optimization of Infrared-convective Drying ofWhite Mulberry Fruit Using Response Surface Methodology and Development of a Predictive Model through Artificial Neural Network. International Journal of fruit science, 20(2): 1015-1035. https://doi.org/10.1080/15538362.2020.1774474
Hafezi, N., Sheikhe Davoodi, M. J., & Sajjadieh, S. M. (2016). A Study of Drying Rate of Sliced Potatoes during Radiation-Vacuum Drying Process using Regression and Artificial Neural Network Models. Iranian Journal of Biosystems Engineering, 47(2): 279-289. doi: 10.22059/ijbse.2016.58777. (In persian).
Hameeda, A., Maana, A.A., Khana, M. K. I., Khanc, Imran, M., Niazic, S., Iqbald, M. W., Riazd, T., Manzoore, M. F., & Abdallac, M. (2023). Evaporation kinetics and quality attributes of grape juice concentrate as affected by microwave and vacuum processing. International journal of food properties, 26(1): 1596–1611. https://doi.org/10.1080/10942912.2023.2218062.
Hii, C.L., Ong, S.P., Yap, J.Y., Putranto, A., and Mangindaan, D. (2021). Hybrid drying of food and bioproducts: a review. Drying Technology, 39(11): 1524-1576. https://doi.org/10.1080/07373937.2021.1914078.
Homayounfar, H. & Amiri- Chayjan, R. (2024). Improving Orange Pomace Dehydration Process through a New Controlled Atmosphere Dryer under Vacuum Conditions: A Bioactive Compound Investigation and Optimization. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 43(3): 1252-1266. https://doi.org/10.30492/ijcce.2023.1999762.5955
Ismail, O., Seyhun Kipcak, A. S., and Doymaz, I. (2019). Drying of Okra by Different Drying Methods: Comparison of Drying time, Product Color Quality, Energy Consumption and Rehydration. Athens Journal of Sciences, 6(3): 155-168. https://doi.org/10.30958/ajs.6-3-1.
Jafarizadegan, M., Amiri Chayjan, R., & Karamian, R. (2020). Optimization of a combination dryer (Vacuum-Infrared) operation in production process of edible button mushroom powder. Agricultural Engineering (Scientific Journal of Agriculture), 43(2), 141–161. https://doi.org/10.22055/agen.2020.31903.1528.
Jha, P., Meghwal, M., Prabhakar, PK. (2021). Microwave drying of banana blossoms (Musa acuminata): mathematical modeling and drying energetics. Journal of Food Process Preserv, 45(9): e15717. https:// doi. org/ 10. 1111/ jfpp. 15717.
Jiang, H., Zhang, M., S Mujumdar, A., and Limd. R. X. (2014). Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spoutedmicrowave vacuum drying, freeze drying and microwave freeze drying. Journal of Science Food Agric. 94: 1827–1834. DOI 10.1002/jsfa.6501.
Jindarat W, Sungsoontorn S, Rattanadecho, P. (2015). Analysis of energy consumption in a combined microwave–hot air spouted bed drying of biomaterial: coffee beans. Experimental heat-mass transfer, 28: 107–124. DOI: 10.1080/08916152.2013.821544
Kaveh, M. (2017). Using artificial neural networks (ANNs) method in investigation and estimation of some drying characteristics of eggplant and turnip in a combined microwave – convective dryer. Journal of Food Science and Technology, 70(14): 27-46. (In Persian).
Kaveh, M., & Abbaspour-Gilandeh, Y. 2022. Drying Characteristics, Specific Energy Consumption, Qualitative Properties, Total Phenol Compounds, and Antioxidant Activity During Hybrid Hot Air-Microwave-Rotary Drum Drying of Green Pea. Iranian Journal of Chemistry and Chemical Engineering, 41(2): 652-669. doi: 10.30492/ijcce.2020.127111.4114
Kaveh, M., Abbaspour, Y., & Nowacka, M. (2021). Optimisation of microwave-rotary drying process and quality parameters of terebinth. Biosystems Engineering, 20(8): 113-130. DOI: 10.1016/j.biosystemseng.2021.05.013.
Khakbaz Heshmati, M., & Seifi Moghaddam, A. (2017). Application of intermittent microwave – convective hot air technique on quality and nutritional characteristics of dried kiwi slices. Food research journal. 27(1): 111-126. (in persian).
Khanlari, A., Gu¨ ler, H.€ O., Tuncer, A. D., S‚ irin, C., Bilge, Y. C., Yılmaz, Y., et al. (2020). Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable Energy, 145: 1677-1692. https://doi.org/10.1016/j.renene.2019.07.076.
Klein, BP., and Perry, AK. (1982). Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. Journal of Food Science, 47: 941-945. https://doi.org/10.1111/j.1365-2621.1982.tb12750.x
Kumar, A., Kandasamy, P., Chakraborty, I., and Hangshing, L. (2022). Analysis of energy consumption, heat and mass transfer, drying kinetics and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering, 219: 85–102. https://doi.org/10.1016/j.biosystemseng.2022.04.026
Leilayi, M., arabhosseini, A., Akhijahani, H.S., Kaveh, M., nezamlou, N., & Aghaei, M. (2024). Energy and exergy efficiencies of batch paddy rice drying with liquefied petroleum gas dehumidification: A comprehensive analysis using adaptive neuro-fuzzy inference system and artificial neural networks approaches. Energy Conversion and Management. (under press). doi: https://doi.org/10.1016/j.ecmx.2024.100826.
Li, J., Huang, Y., Gao, M., Tie, J., & Wang, G. (2024). Shrinkage properties of porous materials during drying: A review. Frontiers in Materials, 11, 1330599. https://doi.org/10.3389/fmats.2024.1330599
Liu, S., Zhu, W., Bai, X., You, T., & Yan, J. (2019). Effect of ultrasonic energy density on moisture transfer during ultrasound enhanced vacuum drying of honey. Journal of Food Measurement and Characterization, 13(1): 559-570.
Liu, Y., Sabadash, S., Duan, Z., Deng, C. (2022). The influence of different drying methods on the quality attributes of beetroots. Eastern-European Journal of Enterprise Technologies, 3 (11 (117)): 60–68. https://doi.org/10.15587/1729-4061.2022.
Long, X., Cai, L., & Li, W. (2019). RSM-based assessment of pavement concrete mechanical properties under joint action of corrosion, fatigue, and fiber content. Construction and Building Materials, 197: 406-420. https://doi.org/10.1016/j.conbuildmat.2018.11.157.
Mella, C., Vega-Gálvez, A., Uribe, E., Pasten, A., Mejias, N., Quispe- Fuentes, I. (2022). Impact of vacuum drying on drying characteristics and functional properties of beetroot (Beta vulgaris), Applied Food Research, 2: 100 -120. https://doi.org/10.1016/j.afres.2022.100120.
Mitrevski, J., Panteli'c, N.Ð., Dodevska, M.S., Koji'c, J.S., Vuli'c, J.J., Zlatanovi'c, S., Gorjanovi'c, S., Laliˇci'c-Petronijevi'c, J., Marjanovi'c, S., and Anti'c, V.V. (2023). Effect of Beetroot Powder Incorporation on Functional Properties and Shelf Life of Biscuits. Foods, 12, 322. https://doi.org/ 10.3390/foods12020322.
Monteiro, R. L., Garcia, A. H., Tribuzi, G., Mattar Carciofi, B. A., & Laurindo, J. B. (2021). Microwave vacuum drying of Pereskia aculeata Miller leaves: Powder production and characterization. Journal of Food Process Engineering, 44(2): 1–12. https://doi.org/10.1111/jfpe.13612.
Moses, J. A., Norton, T., Alagusundaram, K., and Tiwari, B. K. (2014). Novel Drying Techniques for the Food Industry. Food Engineering Reviews, 6(3): 43-55. https://doi.org/10.1007/s12393-014-9078-7.
Musielak, G. & Kieca, A. (2014). Influence of Varying Microwave Power during Microwave–Vacuum Drying on the Drying Time and Quality of Beetroot and Carrot Slices. Drying Technology: An International Journal, 32:11, 1326-1333, DOI: 10.1080/07373937.2014.924135.
Nanvakenari, S., Movagharnejad, K., Latifi, A. (2022). Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer. Food Research International, 159, 111617. https://doi.org/10.1016/j.foodres.2022.111617.
Parniakov, O., Mikhrovska, M., Wiktor, A., Alles, M., Ristic, D., Bogusz, R., Nowacka, M., Devahastin, S., Mujumdar, A., Heinz, V, and Smeta, S. 2021. Insect processing for food and feed: A review of drying methods. Drying Technology, 40(8): 1500-1513. https://doi.org/10.1080/07373937.2021.1962905.
Pei, Y. P., Sun, B-H., Vidyarthi, S. K., Zhu, Z-Q., Yan, S-K., Zhang. Y., Wang, J., and Wei Xiao, H. (2023). Pulsed pressure enhances osmotic dehydration and subsequent hot air-drying kinetics and quality attributes of red beetroot. Drying Technology, 41(2): 262-276. https://doi.org/10.1080/07373937.2022.2031209.
Pu, Y.Y., & Sun, D.W. (2017). Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosystems Engineering, 156: 108–119. https://doi.org/10.1016/j.biosystemseng.2017.01.006.
Rashidi, M., Amiri Chayjan, R., Ershadi, A., & Ghasemi, A. (2020). Modeling and optimization of vacuum-infrared dryer performance in the production process of compressed tomato tablets: chemical properties. Biosystem Engineering of Iran, 51(3): 571-584. (In Persian). doi: 10.22059/ijbse.2020.292861.665245
Rashidi, M., Amiri Chayjan, R., Ghasemi, A., & Ershadi, A. (2021). Tomato tablet drying enhancement by intervention of infrared - A response surface strategy for experimental design and optimization. Biosystems Engineering, 208: 199-212. https://doi.org/10.1016/j.biosystemseng.2021.06.003.
Santos, K.C., Guedes, J.S., Rojas, M.L., Carvalho, G.R., Augusto, P.E.D. (2021). Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonics Sonochemistry. (under press). doi: https:// doi.org/10.1016/j.ultsonch.2020.105304.
Sedani, S. R., Pardeshi, I. L., & Dorkar, A. R. (2021). Study on the effect of stepwise decreasing microwave power drying (SDMPD) of moth bean sprouts on its quality. Legume Science, 3(4), e84. https://doi.org/10.1002/leg3.84.
Singh, P., & Gaur, M. K. (2020). Review on development, recent advancement and applications of various types of solar dryers. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 14471–14491. https://doi.org/10.1080/15567036.2020.1806951.
Suhanya, P., Juzaili, B., Azizi, R., Ismail, S., Sasidharan, S., and Mahsufi, M. (2009). Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae family) leaves. Molecules, 14: 3964-3974. doi:10.3390/molecules14103964.
Sujindaa, N., Saengsuwanb, T., & Chaichana, N. (2024). Study on drying characteristics, color, and vitamin c preservation of green banana slices using a vacuum heat pump system. Agricultural Engineering. 28(1): 167-184. DOI: 10.2478/agriceng-2024-0011.
Tan, S., Wang, Z., Xiang, Y., Deng, T., Zhao, X., Shi, S., Zheng, Q., Gao, X., & Li, W. (2020). The effects of drying methods on chemical profiles and antioxidant activities of two cultivars of Psidium guajava fruits. LWT - Food Science and Technology, 118, Article 108723. (In press). doi: https://doi.org/10.1016/ j.lwt.2019.108723.
Vallespir, F., Rodríguez, O., Eim, V. S., Rosselló, C., & Simal, S. (2019). Effects of freezing treatments before convective drying on quality parameters: Vegetables with different microstructures. Journal of Food Engineering, 249: 15–24. https://doi.org/10.1016/j.jfoodeng.2019.01.006.
Zhang, F. J., Wang, X., Xin, L. D., Li, L. X., Dai, J. W. and Zhou, J. (2023). Moisture diffusion modelling and effect of microwave vacuum drying on drying kinetics and quality of yam. International Food Research Journal, 30(3): 626 – 639. https://doi.org/10.47836/ifrj.30.3.07.
Zhang, W., Chen, C., Pan, Z., and Zheng, Z. (2021). Vacuum and infraredassisted hot air impingement drying for improving the processing performance and quality of Poria cocos (Schw.) Wolf Cubes. Foods 10(5) :345. https:// doi. org/ 10. 3390/ foods 10050 992.
Zhang, Z., Chen, Y., Peng, J., Huang, S., & Wu, H. (2024). Study on drying characteristics of combined microwave-hot air drying of paddy. Case Studies in Thermal Engineering, 64. 105539. https://doi.org/10.1016/j.csite.2024.105539.