Alheidary, M. (2018). Effect of the operating pressure and nozzle height on dropletproperties using knapsack sprayer. Iraqi Journal of Agricultural Sciences, 49 (3). https://doi.org/10.36103/ijas.v49i3.105
Anonymous. (2015). Equipment for crop protectionKnapsack sprayers-Part 2: Test methods. INS: 10346-2.
Asaei, H., Jafari, A., & Loghavi, M. (2016). Development and evaluation of a targeted orchard sprayer using machine vision technology. Journal of Agricultural Machinery 6 (2): 362-375. (In Persian). https://doi.org/10.22067/jam.v6i2.37220
Behzadipour, F., Ghaseminezhad Rayini, M., Asoudar, M. A., Marzban, A., & Mahdizadeh, S. (2017). Study of the operational parameters of crops turbine sprayer (turbo liner) on spray quality and diameter of droplets, Using Image Processing. Journal of Agricultural Machinery 7 (1): 61-72. (In Persian). https://doi.org/10.22067/jam.v7i1.48194
Cavalier, S., & Lenik, M. (2010). Impact of nozzle types on efficacy of herbicides applied for weed control in maize. Faculty of Agriculture and Life Sciences Maribor, 77: 439-444.
Cerruto, E., Manetto, G., Longo, D., Failla, S., & Papa, R. (2019). A model to estimate the spray deposit by simulated water sensitive papers. Crop protection, 124, 104861. http://dx.doi.org/10.1016/j.cropro.2019.104861
Cunha, M., Carvalho, C., & Marcal, A. R. )2012(. Assessing the ability of image processing software to analyse Spray quality on water-sensitive papers used as artificial targets. Biosystems Engineering, 111(1): 11-23. http://dx.doi.org/10.1016/j.biosystemseng.2011.10.002
Dai, S., Ou, M., Du, W., Yang, X., Dong, X., Jiang, L., ... & Jia, W. (2023). Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Frontiers in Plant Science, 14, 1184244. https://doi.org/10.3389/fpls.2023.1184244
Daneshjoo, M., Abbaspoorfard. M., Aghkhani, M., & Arian, M. )2008(. Evaluation and application of suitable software for measuring the density and size of poison droplets. The 5th National Conference on Agricultural Machinery Engineering (Biosystems). Aug. 27. Ferdowsi University of Mashhad. Iran. (In Persian)
Dekeyser, D., Duga, A. T., Verboven, P., Endalew, A. M., Hendrickx, N., & Nuyttens, D. (2013). Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling. Biosystems Engineering, 114(2): 157-169. 10.1016/j.biosystemseng.2012.11.013
Fattahi, S. H., & Abdollah pour, S. (2024). Sensitivity analysis of variables affecting spray drift from pesticides for their environmental risk assessments on agricultural lands. Environment, Development and Sustainability, 1-21. https://doi.org/10.1007/s10668-023-04452-x
Foqué, D., & Nuyttens, D. (2011). Effects of nozzle type and spray angle on spray deposition in ivy pot plants. Pest Management Science, 67(2): 199-208. https://doi.org/10.1002/ps.2051
Gil, E., Llorens, J., Llop, J., Fàbregas, X., Escolà, A., & Rosell-Polo, J. R. (2013). Variable rate sprayer. Part 2–vineyard prototype: Design, implementation, and validation. Computers and Electronics in Agriculture, 95: 136-150. http://dx.doi.org/10.1016/j.compag.2013.02.010
Grella, M., Gallart, M., Marucco, P., Balsari, P., & Gil, E. (2017a). Ground Deposition and Airborne Spray Drift Assessment in Vineyard and Orchard: The Influence of Environmental Variables and Sprayer Settings. Sustainability, 9(5), 728. https://doi.org/10.3390/su9050728
Grella, M., Gil, E., Balsari, P., Marucco, P., & Gallart, M. (2017b). Advances in developing a new test method to assess spray drift potential from air blast sprayers. Spanish Journal of Agricultural Research, 15(3), e0207-e0207.
Haji Agha Alizadeh, H., Poor Vosoughi, H., & Bakhtiari, A. A. )2015(. Evaluating functional factors of electrostatic spraying for the upper and rear surfaces of the leaves using image processing. Iranian Journal of Biosystems Engineering 47: 39-49. (In Persian). https://doi.org/10.22059/ijbse.2016.58476
Ilari, A., Piancatelli, S., Centorame, L., Moumni, M., Romanazzi, G., & Foppa Pedretti, E. (2023). Distribution Quality of Agrochemicals for the Revamping of a Sprayer System Based on Lidar Technology and Grapevine Disease Management. Applied Sciences, 13(4), 2222. https://doi.org/10.3390/app13042222
Jadav, C. V., Jain, K. K., & Khodifad, B. C. (2019). Spray of chemicals as affected by different parameters of air assisted sprayer: a review. Current Agriculture Research Journal, 7(3). https://doi.org/10.12944/CARJ.7.3.03
Jafari Malekabadi, A., Sadeghi, M., & Zaki Dizaji, H. (2016). Comparing Quality of a Telescopic Boom Sprayer with Conventional Orchard Sprayers in Iran. Journal of Agricultural Science and Technology, 18: 585-599. http://dorl.net/dor/20.1001.1.16807073.2016.18.3.1.3
Jafari Malekabadi, A., Sadeghi, M & Zaki Dizaji, H. (2014). Design and Fabrication of Telescopics Boom for Spraying Orchards and Comparison with a Conventional Sprayer. Journal of Mechanical sciences in agricultural machines, 2(2): 28-43. (In Persian).
Khan, F. A., Khorsandi, F., Ali, M., Ghafoor, A., Raza Khan, R. A., Umair, M., ... & Hussain, Z. (2024). Spray drift reduction management in agriculture: A review. Progress in Agricultural Engineering Sciences, 20(1), 1-36.
Lee, S.-y., Park, J., Choi, L.-y., Daniel, K. F., Hong, S.-w., Noh, H. H., & Yu, S.-H. (2023). Quantifying Airborne Spray Drift Using String Collectors. Agronomy, 13(11), 2738. https://doi.org/10.3390/agronomy13112738.
Mahmoudi, F., Heidarbeigi, K., & Azizpanah, A. (2019). Evaluation of the Effect of Pressure and Wind Speed on the Amount of Drift through the Iimage Processing Method. Iranian Journal of Biosystems Engineering, 50(1), 213-221.
Mangado, J., Arazuri, S., Arnal, P., Jarén, C., & López, A. (2013). Measuring the accuracy of a pesticide treatment by an image analyzer. Procedia Technology, 8, 498-502.
Mohseni Mahani, M., Shamsi, M., & Maghsoodi, H. (2017). Design and development of a portable sprayer launched on tree crown. Iranian Journal of Biosystems Engineering 48: 353-360. (In Persian). https://doi.org/10.22059/ijbse.2017.141127.664715
Nasseri, M., Abbaspoorfard, M., Chaji, H., and Jafarzade, E. (2008). Investigating the effect of nozzle aperture diameter, pump pressure and tractor speed, on uniformity of spraying in turbine agitator sprayer (Turboliner). The 5th National Conference on Agricultural Machinery Engineering (Biosystems). Aug. 27. Ferdowsi University of Mashhad. Iran. (In Persian).
Nuyttens, D., De Schampheleire, M., Steurbaut, W., Baetens, K., Verboven, P., Nicolaï, B., ... & Sonck, B. (2006). Experimental study of factors influencing the risk of drift from field sprayers, Part 1: Meteorological conditions. Aspects of applied biology, 77(2).
Nuyttens, D., Zwertvaegher, I., & Dekeyser, D. (2014). Comparison between drift test bench results and other drift assessment techniques. Aspects of Applied Biology: International Advances in Pesticide Application, 122(2), 293-301.
Ranta, O., Marian, O., Muntean, M. V., Molnar, A., Ghețe, A. B., Crișan, V., ... & Rittner, T. (2021). Quality analysis of some spray parameters when performing treatments in vineyards in order to reduce environment pollution. Sustainability, 13(14), 7780. https://doi.org/10.3390/su13147780
Safari, M. )2011(. Development and evaluation of boom automizer sprayer to control sunn pests in wheat production. Research project final report. Ministry of Jahad-e-Agriculture. AREEO, Agricultural Engineering Research Institute Pub.(In Persian).
Salcedo, R., Zhu, H., Jeon, H., Ozkan, E., Wei, Z., Gil, E., Campos, J., & Román, C. (2022). Droplet size distributions from hollow-cone nozzles coupled with PWM valves. Journal of the ASABE, 65(4), 695-706. http://dx.doi.org/10.13031/ja.15064
Shakoori, H. (2019). Numerical simulation and laboratory evaluation of a sprayer T-jet nozzle flow (M. Sc. Thesis), Faculty of Agricultural, Department of Biosystems Engineering, Shiraz university, Shiraz, Iran. (In Persian)
Sun, D., Hu, J., Huang, X., Luo, W., Song, S., & Xue, X. (2024). Study on the Improvement of Droplet Penetration Effect by Nozzle Tilt Angle under the Influence of Orthogonal Side Wind. Sensors, 24(9), 2685. https://doi.org/10.3390/s24092685
Tang, Y., Hou, C. J., Luo, S. M., Lin, J. T., Yang, Z., & Huang, W. F. (2018). Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle. Computers and Electronics in Agriculture, 148: 1-7. https://doi.org/10.1016/j.compag.2018.02.026
Yates, W. E., & Akesson, N. (1973). Reducing pesticide chemical drift. Van Valkenburg, Wade, ed. Pesticide Formulations, 275.