Asghari P., Rahmani A.M., & Seyyed Javadi H.H. (2019). Internet of things applications: a systematic review. Computer Net works 148: 241-261. DOI:10.1016/j.comnet.2018.12.008
Bhardwaj, R. (2019). Environmental Factors Affecting the Crops’ Growth and Development: An Analytical Study. International Journal of Psychosocial Rehabilitation. 1160-1167. DOI:10.53555/V23I1/400051.
Botero-Valencia, J., García-Pineda, V., Valencia-Arias, A., Valencia, J., Reyes-Vera, E., Mejia-Herrera, M., & Hernández-García, R. (2025). Machine Learning in Sustainable Agriculture: Systematic Review and Research Perspectives. Agriculture, 15(4), 377. https://doi.org/10.3390/agriculture15040377
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708)
Peng, Y., Dallas, M.M., Ascencio-Ibáñez, J.T., Hoyer, J.S., Legg, J., Hanley-Bowdoin, L., Grieve, B., & Yin, H. (2022). Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning. Scientific Reports, 12(1), 3113.
Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollár, P. (2020). Designing network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10428-10436)
Rahman, K.N., Chandra Banik, S., Islam, R., Al Fahim, A. A real time monitoring system for accurate plant leaves disease detection using deep learning, Crop Design, Volume 4, Issue 1, 2025, 100092, https://doi.org/10.1016/j.cropd.2024.100092.
Rana, A., Choudhury, D., & Ray, D. (2021). A review of deep learning techniques in precision agriculture: Current and future perspectives. Environmental Monitoring and Assessment, 193(4), 1-21.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437.
Sujatha R., Krishnan S., Chatterjee J.M., Gandomi. A.H. Advancing plant leaf disease detection integrating machine learning and deep learning. Scientifc Reports. (2025) 15:11552, https://doi.org/10.1038/s41598-024-72197-2
Terentev, A., Dolzhenko, V., Fedotov, A., & Eremenko, D. (2022). Current State of Hyperspectral Remote Sensing for Early Plant Disease Detection: A Review. Sensors, 22(3), 757.
Zhang J, Huang Y, Pu R, Gonzalez-Moreno P, Yuan L, Wu K, Huang W. Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture. 2019; 165: 104943.
Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).