Document Type : Original Article
Highlights
Akandi, S. R., Qhodsi, S. S., Minaei, S., Najafi, G., & Hashjin, T. T. (2018). Mechanical Properties of (Aloe v era L.) Leaf for Designing Gel Extraction Machines. J. Agr. Sci. Tech, 19(4), 809–820.
Azadbakht, M., Mahmoodi, M. J., & Vahedi Torshizi, M. (2019). Effects of Different Loading Forces and Storage Periods on the Percentage of Bruising and Its Relation with the Qualitative Properties of Pear Fruit. International Journal of Horticultural Science and Technology, 6(2), 177–188.
Azadbakht, M., Torshizi, M. V., & Ziaratban, A. (2016). Application of Artificial Neural Network ( ANN ) in predicting mechanical properties of canola stem under shear loading. Agricultural Engineering International: CIGR Journal, 18(5), 413–424.
Azadbakht, M., Vahedi Torshizi, M., & Asghari, A. (2019). Biological properties classification of pear fruit in dynamic and static loading using artificial neural network. Innovative Food Technologies, 6(4), 507–520.
Azadbakht, M., Vahedi Torshizi, M., & Mahmoodi, M. J. (2018). Determination of pear bruises due to a thin edge compression load by CT scan method. Innovative Food Technologies (JIFT). https://doi.org/10.22104/jift.2018.2842.1684
Azadbakht, M., Vehedi Torshizi, M., Aghili, H., & Ziaratban, A. (2018). Application of artificial neural network (ann) in drying kinetics analysis for potato cubes. CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 10(2), 96–106. https://www.cabdirect.org/cabdirect/abstract/19981100164
B. Khoshnevisan, Sh. Rafiee, M. Omid, M. Y. (2013). Prediction of environmental indices of Iran wheat production using artificial neural networks. International Journal of Energy and Environment, 4(2), 339–348.
Balogun, W. A., Salami, M. E., Aibinu, A. M., Mustafah, Y. M., & S, S. I. B. (2014). Mini Review: Artificial Neural Network Application on Fruit and Vegetables Quality Assessment. International Journal of Scientific & Engineering Research, 5(6), 702–708.
Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Science and Technology, 30(6), 609–615.
Diels, E., van Dael, M., Keresztes, J., Vanmaercke, S., Verboven, P., Nicolai, B., Saeys, W., Ramon, H., & Smeets, B. (2017). Assessment of bruise volumes in apples using X-ray computed tomography. Postharvest Biology and Technology, 128, 24–32. https://doi.org/10.1016/j.postharvbio.2017.01.013
Fadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes, 11(2), 590. https://doi.org/10.3390/pr11020590
Fathi, M., Mohebbi, M., & Razavi, S. M. A. (2011). Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit. Food and Bioprocess Technology, 4(8), 1357–1366. https://doi.org/10.1007/s11947-009-0222-y
Fu, L., Sun, S., Li, R., & Wang, S. (2016). Classification of Kiwifruit Grades Based on Fruit Shape Using a Single Camera. Sensors, 16(7), 1012. https://doi.org/10.3390/s16071012
Ganiron, T. U. (2014). Size properties of mangoes using image analysis. International Journal of Bio-Science and Bio-Technology, 6(2), 31–42. https://doi.org/10.14257/ijbsbt.2014.6.2.03
Kolniak-Ostek, J. (2016). Identification and quantification of polyphenolic compounds in ten pear cultivars by UPLC-PDA-Q/TOF-MS. Journal of Food Composition and Analysis, 49, 65–77. https://doi.org/10.1016/j.jfca.2016.04.004
Li, W. L., Li, X. H., Fan, X., Tang, Y., & Yun, J. (2012). Response of antioxidant activity and sensory quality in fresh-cut pear as affected by high O2 active packaging in comparison with low O2 packaging. Food Science and Technology International, 18(3), 197–205.
Liu, Y., & Ying, Y. (2007). Noninvasive Method for Internal Quality Evaluation of Pear Fruit Using Fiber-Optic FT-NIR Spectrometry. International Journal of Food Properties, 10(4), 877–886. https://doi.org/10.1080/10942910601172042
Martín-Diana, A. B., Rico, D., Barat, J. M., & Barry-Ryan, C. (2009). Orange juices enriched with chitosan: Optimisation for extending the shelf-life. Innovative Food Science & Emerging Technologies, 10(4), 590–600.
Massah, J., Hajiheydari, F., & Derafshi, M. H. (2017). Application of Electrical Resistance in Nondestructive Postharvest Quality Evaluation of Apple Fruit. Journal of Agricultural Science and Technology, 19, 1031–1039.
Mohammad Vahedi Torshizi, A. A., Tabarsa, F., Danesh, P., Ali, & Akbarzadeh. (2020). CLASSIFICATION BY ARTIFICIAL NEURAL NETWORK FOR MUSHROOM COLOR CHANGING UNDER EFFECT UV-A IRRADIATION. Carpathian Journal of Food Science and Technology, 152–162. https://doi.org/10.34302/crpjfst/2020.12.2.16
Mohsenin, N. (1968). Physical properties of plant and animal materials. Journal of Agricultural Engineering Research, 13(4), 379. https://doi.org/10.1016/0021-8634(68)90151-0
N. Galili, I. Shmulevich, & N. Benichou. (1998). Acoustic Testing of Avocado for Fruit Ripness Evaluation. Transactions of the ASAE, 41(2), 399–407. https://doi.org/10.13031/2013.17164
Pérez-Jiménez, J., & Saura-Calixto, F. (2015). Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Research International, 74, 315–323. https://doi.org/10.1016/j.foodres.2015.05.007
Salehi, F. 1, Gohari Ardabili, A., Nemati, A. 2, & Latifi Darab, R. (2017). Modeling of strawberry drying process using infrared dryer by genetic algorithm–artificial neural network method. Journal Food Science and Technology, 14, 105–114.
Salehi, F., & Razavi, S. M. A. (2012). Dynamic modeling of flux and total hydraulic resistance in nanofiltration treatment of regeneration waste brine using artificial neural networks. Desalination and Water Treatment, 41(1–3), 95–104. https://doi.org/10.1080/19443994.2012.664683
Sawicka, B. (2020). Post-Harvest Losses of Agricultural Produce (pp. 654–669). https://doi.org/10.1007/978-3-319-95675-6_40
Seyedabadi, M. M., Aghajanzadeh, S. S., Kashaninejad, M., & Ziaiifar, A. M. (2017). INVESTIGATION OF THE EFFECT OF MICROWAVE ON SOME PHYSICOCHEMICAL PROPERTIES OF SOUR ORANGE JUICE.
Soleimanzadeh, B., Hemati, L., Yolmeh, M., & Salehi, F. (2015). GA-ANN and ANFIS models and salmonella enteritidis inactivation by ultrasound. Journal of Food Safety, 35(2), 220–226. https://doi.org/10.1111/jfs.12174
Taghadomi-Saberi, S., Mas Garcia, S., Allah Masoumi, A., Sadeghi, M., & Marco, S. (2018). Classification of Bitter Orange Essential Oils According to Fruit Ripening Stage by Untargeted Chemical Profiling and Machine Learning. Sensors, 18(6), 1922. https://doi.org/10.3390/s18061922
Tavar, M., Rabbani, H., Gholami, R., Ahmadi, E., & Kurtulmus, F. (2024). Investigating the Effect of Packaging Conditions on the Properties of Peeled Garlic by Using Artificial Neural Network (ANN). Packaging Technology and Science, 37(8), 755–767. https://doi.org/10.1002/pts.2819
Valentines, M. C., Vilaplana, R., Torres, R., Usall, J., & Larrigaudiere, C. (2005). Specific roles of enzymatic browning and lignification in apple disease resistance. Postharvest Biology and Technology, 36(3), 227–234.
Wypij, M., Trzcińska-Wencel, J., Golińska, P., Avila-Quezada, G. D., Ingle, A. P., & Rai, M. (2023). The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers’ perception. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.1106230
X, L., & W, W. (1998). Study on compressive properties of apple. Journal of Northwestern Agricultural University, 26(2), 107–108.
Yadav, N., & Kaur, R. (2024). Innovations in Packaging to Monitor and Maintain the Quality of the Food Products. Journal of Packaging Technology and Research, 8(1), 15–50. https://doi.org/10.1007/s41783-024-00163-4
Subjects