Bah, M. D., Hafiane, A., & Canals, R. (2018). Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images. In Remote Sensing. 10 (11).. https://doi.org/10.3390/rs10111690
Chollet, F. (2017). Deep learning with Python. Manning Publications Co.
Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep convolutional neural network. Biosystems Engineering, 151, 72–80. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2016.08.024
Feng, J., Zeng, L., & He, L. (2019). Apple fruit recognition algorithm based on multi-spectral dynamic image analysis. Sensors (Basel, Switzerland), 19(949). https://doi.org/10.3390/s19040949
G C, S., Zhang, Y., Koparan, C., Ahmed, M. R., Howatt, K., & Sun, X. (2022). Weed and crop species classification using computer vision and deep learning technologies in greenhouse conditions. Journal of Agriculture and Food Research, 9, 100325. https://doi.org/https://doi.org/10.1016/j.jafr.2022.100325
Gao, J., French, A. P., Pound, M. P., He, Y., Pridmore, T. P., & Pieters, J. G. (2020). Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields. Plant Methods, 16(1), 29. https://doi.org/10.1186/s13007-020-00570-z
Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5968), 828. https://doi.org/10.1126/science.1183899
Gené-Mola, J., Vilaplana, V., Rosell-Polo, J. R., Morros, J.-R., Ruiz-Hidalgo, J., & Gregorio, E. (2019). Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities. Computers and Electronics in Agriculture, 162, 689-698. https://doi.org/10.1016/j.compag.2019.05.030
Hu, K., Coleman, G., Zeng, S., Wang, Z., & Walsh, M. (2020). Graph weeds net: A graph-based deep learning method for weed recognition. Computers and Electronics in Agriculture, 174, 105520. https://doi.org/https://doi.org/10.1016/j.compag.2020.105520
Juwono, F.H., Wong, W.K., Verma, S., Shekhawat, N., Lease, B.A., Apriono, C., (2023). Machine learning for weed–plant discrimination in agriculture 5.0: an in-depth review. Artif. Intell. Agric. 10, 13–25. https://doi.org/10.1016/j.aiia.2023.09.002.
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016
Khosravi, H., Saedi, S. I., & Rezaei, M. (2021). Real-time recognition of on-branch olive ripening stages by a deep convolutional neural network. Scientia Horticulturae, 287, 110252. https://doi.org/10.1016/j.scienta.2021.110252
Liu, Y.-P., Yang, C.-H., Ling, H., Mabu, S., & Kuremoto, T. (2019). A visual system of citrus picking robot using convolutional neural networks. In Proceedings of the International Conference on Systems Informatics (pp. 344-349).
Nasiri, A., Taheri-Garavand, A., & Zhang, Y.-D. (2019). Image-based deep learning automated sorting of date fruit. Postharvest Biology and Technology, 153, 133-141. https://doi.org/10.1016/j.postharvbio.2018.12.001
Nevavuori, P., Narra, N., & Lipping, T. (2019). Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture, 163, 104859. https://doi.org/https://doi.org/10.1016/j.compag.2019.104859
Peng, H., Huang, B., Shao, Y., Li, Z., Zhang, C., Chen, Y., & Xiong, J. (2018). General improved SSD model for picking object recognition of multiple fruits in natural environment. In Transactions of the Chinese Society of Agricultural Engineering. 155-162.
Ponce, J. M., Aquino, A., & Andújar, J. M. (2019). Olive-Fruit Variety Classification by Means of Image Processing and Convolutional Neural Networks. IEEE Access, 7, 147629–147641. https://doi.org/10.1109/ACCESS.2019.2947160
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497.
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). DeepFruits: A fruit detection system using deep neural networks. Sensors, 16(8), E1222. https://doi.org/10.3390/s16081222
Saedi, S. I., (2023). Determining apple fruit harvest time using color images and deep learning. Iranian Journal of Researches in Mechanics of Agricultural Machinery. 12 (3).
Saedi, S.I., Alimardani, R., Mousazadeh, H., & Salehi, R. (2019). Development and evaluation of an energy and water efficient intensive cropping system. INMATEH - Agricultural Engineering, 58(1), 93-104.
Saedi, S.I., & Khosravi, H. (2020). A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture. Expert Systems with Applications, 159, 113594.
Saedi, S. I., Rezaei, M., & Khosravi, H. (2024). Dual-path lightweight convolutional neural network for automatic sorting of olive fruit based on cultivar and maturity. Postharvest Biology and Technology, 216,113054. https://doi.org/https://doi.org/10.1016/j.postharvbio.2024.113054
Salim, F., Saeed, F., Basurra, S., Qasem, S.N., & Al-Hadhrami, T., (2023). DenseNet-201 and xception pre-trained deep learning models for fruit recognition. Electronic 12, 3132. https://doi.org/10.3390/electronics12143132.
Shao, Y., Guan, X., Xuan, G., Gao, F., Feng, W., Gao, G., Wang, Q., Huang, X., Li, J., (2023) . GTCBS-YOLOv5s: A lightweight model for weed species identification in paddy fields, Computers and Electronics in Agriculture, 215, 108461.https://doi.org/10.1016/j.compag.2023.108461.
Yu, J., Sharpe, S. M., Schumann, A. W., & Boyd, N. S. (2019). Deep learning for image-based weed detection in turfgrass. European Journal of Agronomy, 104, 78–84. https://doi.org/https://doi.org/10.1016/j.eja.2019.01.004
Wang, C., Tang, Y., Zou, X., Luo, L., & Chen, X. (2017). Recognition and matching of clustered mature litchi fruits using binocular charge-coupled device (CCD) color cameras. Sensors, 17(5), E1073. https://doi.org/10.3390/s17051073