Badia-Melis, R., Mc Carthy, U., Ruiz-Garcia, L., Garcia-Hierro, J., & Villalba, J. R. (2018). New trends in cold chain monitoring applications-A review. Food Control, 86, 170-182. https://doi.org/10.1016/j.foodcont.2017.11.022
Benkessirat, A., & Benblidia, N. (2019, November). Fundamentals of feature selection: an overview and comparison. In 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA) (pp. 1-6). IEEE. https://doi.org/10.1109/AICCSA47632.2019.9035281
Brunello, A., Urgolo, A., Pittino, F., Montvay, A., & Montanari, A. (2021). Virtual sensing and sensors selection for efficient temperature monitoring in indoor environments. Sensors, 21(8), 2728.https://doi.org/10.3390/s21082728
Curreri, F., Fiumara, G., & Xibilia, M. G. (2020). Input selection methods for soft sensor design: A survey. Future Internet, 12(6), 97. https://doi.org/10.3390/fi12060097
Gillespie, J., da Costa, T. P., Cama-Moncunill, X., Cadden, T., Condell, J., Cowderoy, T., Ramsey, E., Murphy, F., Kull, M., Gallagher, R., & Ramanathan, R. (2023). Real-time anomaly detection in cold chain transportation using IoT technology. Sustainability, 15(3), 2255. https://doi.org/10.3390/su15032255
Gyawali, P. K., Liu, X., Zou, J., & He, Z. (2022, December). Ensembling improves stability and power of feature selection for deep learning models. In Machine Learning in Computational Biology (pp. 33-45). PMLR. https://doi.org/10.48550/arXiv.2210.00604
Hoang, H. M., Akerma, M., Mellouli, N., Le Montagner, A., Leducq, D., & Delahaye, A. (2021). Development of deep learning artificial neural networks models to predict temperature and power demand variation for demand response application in cold storage. International Journal of Refrigeration, 131, 857-873. https://doi.org/10.1016/j.ijrefrig.2021.07.029
Kamalov, F. (2018, December). Sensitivity analysis for feature selection. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1466-1470). IEEE. https://doi.org/10.1109/ICMLA.2018.00238
Lim, M. K., Li, Y., Wang, C., & Tseng, M. L. (2022). Prediction of cold chain logistics temperature using a novel hybrid model based on the mayfly algorithm and extreme learning machine. Industrial management & data systems, 122(3), 819-840. https://doi.org/10.1108/IMDS-10-2021-0607
Lin, B., Recke, B., Knudsen, J. K., & Jørgensen, S. B. (2007). A systematic approach for soft sensor development. Computers & chemical engineering, 31(5-6), 419-425. https://doi.org/10.1016/j.compchemeng.2006.05.030
Loisel, J., Cornuéjols, A., Laguerre, O., Tardet, M., Cagnon, D., de Lamotte, O. D., & Duret, S. (2022). Machine learning for temperature prediction in food pallet along a cold chain: Comparison between synthetic and experimental training dataset. Journal of Food Engineering, 335, 111156. https://doi.org/10.1016/j.jfoodeng.2022.111156
Loisel, J., Duret, S., Cornuéjols, A., Cagnon, D., Tardet, M., Derens-Bertheau, E., & Laguerre, O. (2021). Cold chain break detection and analysis: Can machine learning help? Trends in Food Science & Technology, 112, 391-399. https://doi.org/10.1016/j.tifs.2021.03.052
Maruthi, R., Lakshmi, I., & Devi, V. D. (2023, August). Monitoring Perishable Foods using Machine Learning and Internet of Things. In 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) (pp. 1584-1587). IEEE. https://doi.org/10.1109/ICAISS58487.2023.10250646
Maxim Integrated. (2019). DS18B20 - Programmable Resolution 1-Wire Digital Thermometer. Retrieved from DS18B20 Datasheet. https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf
May, R., Dandy, G., & Maier, H. (2011). Review of input variable selection methods for artificial neural networks. Artificial neural networks-methodological advances and biomedical applications, 10(1), 19-45. https://doi.org/10.5772/16004
Mercier, S., & Uysal, I. (2018). Neural network models for predicting perishable food temperatures along the supply chain. Biosystems engineering, 171, 91-100. https://doi.org/10.1016/j.biosystemseng.2018.04.016
Nascimento Nunes, M. C., Nicometo, M., Emond, J. P., Melis, R. B., & Uysal, I. (2014). Improvement in fresh fruit and vegetable logistics quality: berry logistics field studies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130307. https://doi.org/10.1098/rsta.2013.0307
Perera, Y. S., Ratnaweera, D. A. A. C., Dasanayaka, C. H., & Abeykoon, C. (2023). The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review. Engineering Applications of Artificial Intelligence, 121, 105988. https://doi.org/10.1016/j.engappai.2023.105988
Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O'Sullivan, J. M. (2022). A review of feature selection methods for machine learning-based disease risk prediction. Frontiers in Bioinformatics, 2, 927312. https://doi.org/10.3389/fbinf.2022.927312
Souza, F. A., Araújo, R., & Mendes, J. (2016). Review of soft sensor methods for regression applications. Chemometrics and Intelligent Laboratory Systems, 152, 69-79. https://doi.org/10.1016/j.chemolab.2015.12.011
Stavropoulos, G., Violos, J., Tsanakas, S., & Leivadeas, A. (2023). Enabling artificial intelligent virtual sensors in an IoT environment. Sensors, 23(3), 1328. https://doi.org/10.3390/s23031328
Swain, S., & Jenamani, M. (2022, November). Cluster analysis for identification of temperature breaks in a reefer container from IoT data. In 2022 International Conference on Futuristic Technologies (INCOFT) (pp. 1-6). IEEE. https://doi.org/10.1109/INCOFT55651.2022.10094499
Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352-1362. https://doi.org/10.1057/jors.2014.103
Xu, F., Sato, Y., Sakai, Y., Sabu, S., Kanayama, H., Satou, D., & Kansha, Y. (2022). A Prediction Model for Temperature Variation and Distribution Using Soft Sensing Method. Chemical Engineering Transactions, 94, 811-816. https://doi.org/10.3303/CET2294135
Zou, Y., Wu, J., Wang, X., Morales, K., Liu, G., & Manzardo, A. (2023). An improved artificial neural network using multi-source data to estimate food temperature during multi-temperature delivery. Journal of Food Engineering, 351, 111518. https://doi.org/10.1016/j