نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشآموخته مقطع کارشناسیارشد، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران،
2 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران
3 دانشیار، گروه مهندسی آب ، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران،
4 مربی پژوهشی، بخش آفات و بیماریهای گیاهی، مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان، اصفهان، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Considering that wheat and barley are important and strategic products in Iran, the Sunn pest is one of the most important pests of these products. Every year, the country's plant protection organization monitors this dangerous pest so that an order to fight it can be issued at the right time. Farm monitoring is a very difficult, time-consuming, and destructive task; it also requires a large number of specialized human resources. One of the goals of this research is to create a non-destructive method for such an operation in the identification of Sunn pests. In this research, the counting of Sunn pests in cereal farms was done by two methods using aerial image processing by recording 954 images and framing method and eye counting in the farm by an expert in two farms with different numbers of this pest. The number of pests in each image was obtained after processing the images using the Python programming language in the PyCharm learning library. The statistical study results showed no significant difference at the 1% probability level between the average data of the two methods. This method can be used confidently to monitor the Sunn pest in cereal farms. In this research, by using UAV image processing, a fast, accurate, and non-destructive method was proposed and evaluated for counting the pests and issuing spraying orders in cereal farms.
کلیدواژهها [English]