Pifeh, A. (2008). Examining the finished accounting system of agricultural products. 2nd International Conference on Operational Budgeting. Tehran. https://civilica.com/doc/74140
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
Baştanlar, Y., & Özuysal, M. (2013). Introduction to machine learning. miRNomics: MicroRNA biology and computational analysis, 105-128. https://doi.org/10.1007/978-1-62703-748-8_7
Ouazzani Chahidi, L., Fossa, M., Priarone, A., & Mechaqrane, A. (2021). Evaluation of supervised learning models in predicting greenhouse energy demand and production for intelligent and sustainable operations. Energies, 14(19), 6297. https://doi.org/10.3390/en14196297
Esmaeli, H., & Roshandel, R. (2020). Optimal design for solar greenhouses based on climate conditions. Renewable energy, 145, 1255-1265. https://doi.org/10.1016/j.renene.2019.06.090
Everitt, B. S. (2005). Classification and regression trees. Encyclopedia of statistics in behavioral science. https://doi.org/10.1002/0470013192.bsa753
Frausto-Solis, J., Gonzalez-Sanchez, A., & Larre, M. (2009, November). A new method for optimal cropping pattern. In Mexican International Conference on Artificial Intelligence (pp. 566-577). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_50
Hosseinnejad, A., Saboohi, Y., Zarei, G., & Shayegan, J. (2023). Developing an integrated model for allocating resources and assessing technologies based on the watergy optimal point (water-energy nexus), case study: a greenhouse. Journal of Sustainable Development of Energy, Water and Environment Systems, 11(1), 1-32. https://doi.org/10.13044/j.sdewes.d10.0416
Kim, S. Y., Park, K. S., & Ryu, K. H. (2018). Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse. KIPS Transactions on Software and Data Engineering, 7(4), 129-134.
Kulyal, M., & Saxena, P. (2022, November). Machine learning approaches for crop yield prediction: A review. In 2022 7th International Conference on Computing, Communication and Security (ICCCS) (pp. 1-7). IEEE. https://doi.org/10.1109/ICCCS55188.2022.10079240
Maraveas, C. (2022). Incorporating artificial intelligence technology in smart greenhouses: Current State of the Art. Applied Sciences, 13(1), 14. https://doi.org/10.3390/app13010014
Gopal, P. M., & Bhargavi, R. (2019). A novel approach for efficient crop yield prediction. Computers and Electronics in Agriculture, 165, 104968. https://doi.org/10.1016/j.compag.2019.104968
Rani, N., Bamel, K., Shukla, A., & Singh, N. (2022). Analysis of Five Mathematical Models for Crop Yield Prediction. South Asian Journal of Experimental Biology, 12(1). https://doi.org/10.38150/sajeb.12(1).p46-54
Palani, H. K., Ilangovan, S., Senthilvel, P. G., Thirupurasundari, D. R., & Kumar, R. (2023, November). AI-powered predictive analysis for pest and disease forecasting in Crops. In 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI) (pp. 950-954). IEEE. https://doi.org/10.1109/ICCSAI59793.2023.10421237
Pandorfi, H., Bezerra, A. C., Atarassi, R. T., Vieira, F. M., Barbosa Filho, J. A., & Guiselini, C. (2016). Artificial neural networks employment in the prediction of evapotranspiration of greenhouse-grown sweet pepper. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(6), 507-512. https://doi.org/10.1590/1807-1929/agriambi.v20n6p507-512
Melal, S. R., Aminian, M., & Shekarian, S. M. (2024). A machine learning method based on stacking heterogeneous ensemble learning for prediction of indoor humidity of greenhouse. Journal of Agriculture and Food Research, 16, 101107. https://doi.org/10.1016/j.jafr.2024.101107
Singh, V. K., & Tiwari, K. N. (2017). Prediction of greenhouse micro-climate using artificial neural network. Appl. Ecol. Environ. Res, 15(1), 767-778. http://dx.doi.org/10.15666/aeer/1501_767778
Taki, M., Ajabshirchi, Y., Ranjbar, S. F., & Matloobi, M. (2016). Application of Neural Networks and multiple regression models in greenhouse climate estimation. Agricultural Engineering International: CIGR Journal, 18(3), 29-43.
Van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and electronics in agriculture, 177, 105709. https://doi.org/10.1016/j.compag.2020.105709
Yang, Y., Gao, P., Sun, Z., Wang, H., Lu, M., Liu, Y., & Hu, J. (2023). Multistep ahead prediction of temperature and humidity in solar greenhouse based on FAM-LSTM model. Computers and Electronics in Agriculture, 213, 108261. https://doi.org/10.1016/j.compag.2023.108261
Zou, W., Yao, F., Zhang, B., He, C., & Guan, Z. (2017). Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm. Neurocomputing, 249, 72-8 https://doi.org/10.1016/j.neucom.2017.03.023