نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه مهندسی بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران.
2 استاد گروه مهندسی بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
3 مکانیک بیوسیستم، دانشگاه محقق اردبیلی
4 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
In this research, field experiments were carried out in two types of soil (sandy clay loam and clay) to model the traction performance of the tractor considering drawbar power, rolling resistance, and traction efficiency, using deep learning and convolutional neural network while having some parameters such as soil type and conditions, tool parameters, and operation parameters. The tests were conducted within each soil texture in the form of factorial tests based on the randomized complete block design (RCBD) in triplicates. The tests were done in various moisture levels (8-17% for dry soils and 18-40% for moist soils), tractor forward speed (1.2, 1.6, 1.8, and 2.2 km h-1), working depth (30 and 50 cm), the number of pass (2 and 6 times), and tire inflation pressure (20 and 25 psi). The cone index, dynamic load, draft force, and moisture content were measured in each tests. The networks designed to model the drawbar power, rolling resistance, and traction efficiency were of convolutional neural network type. Various algorithms such as Sgdm, Adam, and Rmsprop were utilized to train the network. The results showed that the neural network developed by Sgdm algorithm outperformed the others. Therefore, this algorithm was utilized for the modeling process. Statistical criteria such as R2 and MSE were also employed to evaluate the performance of the network. For the drawbar power, the 8-499-499-1 architecture showed the best performance with R2=0.9953 and MSE=0.0016. Concerning the rolling resistance, the best performance was observed in 8-301-305-1 architecture with R2=0.9903 and MSE=0.0039. The best performance for the traction efficiency was obtained by 8-371-371-1 architecture with R2=0.9888 and MSE=0.003. The results showed that these networks can be used to model parameters by removing convolution layers and reducing dimensions.
کلیدواژهها [English]