پژوهش‌های مکانیک ماشینهای کشاورزی

پژوهش‌های مکانیک ماشینهای کشاورزی

مقایسه عملکرد الگوریتم‏های یادگیری ماشین در تفکیک اراضی کشاورزی ماسال با استفاده از تصاویر ماهواره سنتینل-2

نوع مقاله : مقاله پژوهشی

نویسندگان
گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران
چکیده
تغییرات کاربری اراضی کشاورزی در اثر عوامل انسانی یا طبیعی و پایش آن یکی از مهم‌ترین چالش‌‌ها در استان‌‌های شمالی کشور است. الگوریتم‏های مختلف یادگیری ماشین برای مناطق با ویژگی‌‌های خاص مکانی دارای عملکردهای متفاوتی هستند. هدف از مطالعه حاضر، استفاده از تصویر ماهواره‌‌ای سنتینل-2 جهت طبقه‌‌بندی کاربری اراضی شهرستان ماسال و مقایسه‏ی طبقه‏بندهای بیشینه احتمال، حداقل فاصله، فاصله ماهالانوبیس و ماشین بردار پشتیبان با هسته‏های خطی، چندجمله‏ای، سیگموئید و توابع پایه شعاعی است. برای فراهم آوردن داده‌‌های تعلیمی و آزمون برای الگوریتم‏ها، علاوه بر نقاط برداشت زمینی توسط سیستم موقعیت‏یاب جهانی و نقشه‌‌های Google Earth، از شاخص‌های طیفی شامل شاخص سبزی تفاضلی نرمال شده، شاخص  تفاضلی نرمال‏شده سازه‏ها و شاخص تفاضلی نرمال شده میانگین آب نیز برای تعیین دقیق‌‌تر واقعیت‌های زمینی استفاده شد. اعتبارسنجی مدل‏ها توسط ماتریس اغتشاش و محاسبه‏ی عامل‏های ضریب کاپا و صحت کل انجام شد. نتایج نشان داد الگوریتم بیشینه احتمال با صحت کلی و ضریب کاپا به ترتیب 29/97 درصد و 96/0 دقیق‏ترین عملکرد طبقه‏بندی را به خود اختصاص داده و الگوریتم ماشین بردار پشتیبان با هسته خطی با مقادیر ضریب کاپا و صحت کلی به ترتیب 46/92 درصد و 89/0 در رتبه بعدی قرار داشت. ضعیف‏ترین عملکرد به الگوریتم حداقل فاصله با صحت کل 97/72 درصد و ضریب کاپای 66/0 تعلق داشت. با توجه به نتایج این تحقیق، طبقه‌‌بند بیشینه احتمال، عملکرد بهتری را در تفکیک کاربری‌‌های اراضی شهرستان ماسال ارائه داده است. نتایج این تحقیق برای سیاست‌‌گذاران و مدیران استان در آگاهی از تغییرات کاربری زمین‏های کشاورزی و جنگلی منطقه حائز اهمیت است. 
کلیدواژه‌ها

موضوعات


Akbarinasab, M., Abbasi, F., & Talebpour, N. (2023). Detection of Babolroud River plume using Sentinel-2 satellite image case study: flood in 2018. Journal of Hydrogeomorphology, 10(35), 15-11.  https://doi.org/10.22034/hyd.2023.54406.1664
Amin, G., Imtiaz, I., Haroon, E., Saqib, N. u., Shahzad, M. I., and Nazeer, M. (2024). Assessment of machine learning algorithms for land cover classification in a complex mountainous landscape. Journal of Geovisualization and Spatial Analysis 8, 34, 1-19. https://doi.org/10.1007/s41651-024-00195-z
Asghari, S., jalilyan, R., pirozineghad, N., madadi, A. & yadeghari, M. (2020). Evaluation of water extraction indices using Landsat satellite images (Case Study: Gamasiab River of Kermanshah). Geographical Sciences Journal, 20(58), 53-70. https://doi.org/10.29252/jgs.20.58.53
Asadi, F., Mirakhorlo, K. & Mostafa, M. (2021). Estimation of poplar cultivation area in Mazandaran province using Santinel 2 satellite images. Ecology of Iranian Forest, 9(18), 54-62. https://doi.org/10.52547/ifej.9.18.54
Atzberger, C. 2013. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote sensing, 5, 949-981. https://doi.org/10.3390/rs5020949
Bruzzone, L., & Demir, B. (2014). A review of modern approaches to classification of remote sensing data. Land Use and Land Cover Mapping in Europe: Practices & Trends, 127-143. https://doi.org/10.1007/978-94-007-7969-3_9
Chen, Y. & Gong, P. (2013). Clustering based on eigenspace transformation–CBEST for efficient classification. ISPRS journal of photogrammetry and remote sensing, 83, 64-80. https://doi.org/10.1016/j.isprsjprs.2013.06.003
Davodpour, R., & Toranjzar, H. (2020). Preparation of land use map using ETM+ Landsat (a case study in Hendodar Watershed). Journal of Environmental Science and Technology, 22, 379-389. (In Persian).
Feyzollah Pour, M. (2024). Detection of changes in the water area of Miqan Lagoon using spectral indices NDWI, MNDWI, AWEI, and supervised SVM models during the period from 1994 to 2022. Geographical Studies of Arid Regions, 14(54), 104-119. (In Persian). https://doi.org/10.22034/jargs.2023.404501.1045
Ghorbani, A., Aslami, F., Ahmadabadi, S., & Ghaffari, S. (2016). Land use mapping of Kaftareh Watershed of Ardabil using visual and digital processing of ETM+ image. Natural Ecosystems of Iran, 6(4), 27-43. (In Persian).
Ghosh, M. K., Kumar, L., & Roy, C. (2015). Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 137-144.
Golabkesh, F., Nazarpour, A., Ghanavati, N. & Babaeinejad, T. (2022). Application of supervised classification algorithms in long-term survey of surface soil salinity by using remote sensing: a case study of Atabiyeh Plain, Khuzestan Province. JWSS-Isfahan University of Technology, 26(2), 203-221. https://doi.org/10.47176/jwss.26.2.42982
Gong, W., Yuan, L., Fan, W., Wang, X., & Stott, P. (2016). Comparison to supervised classification modelling in land use cover using Landsat 8 OLI data: an example in Miyun county of North China. Nature Environment and Pollution Technology, 15(1), 243.
Lalehzari E, Esmaeily A, Homayouni S. (2018). Development and evaluation of a noise reduction algorithm for improvement of hypserspectral image classification. JGST, 8(1), 195-207. (In Persian).
Mesri, A., Rahimi-Ajdadi, F., & Bagheri, I. (2024). Zoning land surface roughness for wind turbine installation using satellite remote sensing: a case study of kiashahr county. Iranian Journal of Biosystem Engineering, 55 (1), 93-112. (In Persian). https://doi.org/10.22059/ijbse.2024.380477.665560
Mesri, A., Rahimi-Ajdadi, F., & Bagheri, I. (2022). Monitoring Rice Land Changes Using GIS and RS. Journal of Agricultural Machinery, 12 (4): 515-527. (In Persian).  https://doi.org/10.22067/jam.2021.69174.1025
Mola Aghajanzadeh, S., Soleymani, K., Habibnejad, M., Kavyan, A., & Rahmani, M. (2021). Application of remote sensing in assessing land use changes in Haraz Watershed. Geographical Researches, 36(3), 275-284. (In Persian). https://doi.org/10.29252/geores.36.3.275
Mahvash Mohammadi, N., & Hezarkhani, A. (2020). Separating alteration units in the Takht-e-Gonbad district using via comparing two classification methods of Support vector machine and maximum likelihood. Iranian Journal of Geology, 53(53), 31-43. (In Persian).
Rahimi-Ajdadi, F., & Khani, M. (2022). Multi-temporal detection of agricultural land losses using remote sensing and gis techniques, Shanderman, Iran. Acta Technologica Agriculturae, 25(2), 67-72.  https://doi.org/10.2478/ata-2022-0011
Rahnama, S., Maharlooei, M., Rostami, M. & Maghsoudi, H. (2019). Determining the best classification algorithm in order to estimate the area under date palm cultivation using LANDSAT 8 satellite imagery. Journal of Agricultural Machinery, 9(2), 321-335. (In Persian). https://doi.org/10.22067/jam.v9i2.67310
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ, 351(1), 309.
Ramesh, B., & Krishnan, N. (1991). Application of remote sensing for analysis of urban fringe dynamics—case study of Jaipur, India. Proceeding Asian Conference on Remote Sensing (ACRS).
Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78-87. https://doi.org/10.1016/j.isprsjprs.2012.04.001
Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote sensing of environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
Yasin, M. Y., Abdullah, J., Noor, N. M., Yusoff, M. M., & Noor, N. M. (2022, October). Landsat observation of urban growth and land use change using NDVI and NDBI analysis. In IOP Conference Series: Earth and Environmental Science, 1067(1), 012037. https://doi.org/10.1088/1755-1315/1067/1/012037
Zare Khormizie, H. , Ghafarian Malamiri, H. R. , & Mortaz, M. (2020). Evaluation of supervised classification capability of Landsat-8 and Sentinel-2A satellite images in determining type and area of pistachio cultivars. Journal of RS and GIS for Natural Resources, 11(38) 84-103. (In Persian). https://doi.org/10.30495/girs.2020.672378